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QUADRIMPULSE FLYB_ACK WITH REVERSION
G. V. Ufimtsev

Quadrimpulse flyback between two points which move along ) /41
round coplanar orbits uniformly in the same direction is examined.
Two pulses are applied in flyback from the first Ppbéint to the se-
cond, two~-in reverse flyback. A round orbit, in which the first /42
pulse is applied, will be called the starting orbit; the orbit
which is the target of our flight~-the destination orbit. Let us
seek the energetically optimal flyback, considering the fact that
the total flyback time is restricted, and the stay time in the
destination orbit must not be less than some guantity.

Let a; be the radius of the starting orbit; a,~~the radius

of the destination orbit; Pyr €4 w.=-Keplerian elements of the

1l
flyback ellipse from the starting orbit to the destination orbit.

Por B4y mz-—elements of the ellipse of reverse flyback; k--con-

stant of gravitation of the central field; n.--mean motion of a

point along the starting orbit; n,--mean motion of a point along
the destination orbit; tyrese sty --moments of pulse application;
u,gr Uyo~~initial phases of motion of the first and second points
between which flyback is effected, corresponding to time to; Vit

v i =1, 2--true anomalies in ellipses of flyback at instant

iu’
of pulse application.

Then the boundary conditions can be written in the form

Pr—a (142, cos v,,)=0,

Pi—ay(14¢, cos v, =0,

Pr—as{14€,c08 1u,)=0,

P (146 cos v, ) =0,

u?o'f’“l (fH—f)—w)—7,,=0,

o+ 1y (.jz_tn)—mlkfvlk—Qﬂll =0,

Hogt+Rg (fg—1 ) — g =— Vg, =0,

Uyg 1y {fs—1 ) —wy—y,— Dy =0, 1l
7 (p]' el-u e ,Uht)-'_k ("'2"_!1) =Or

ke (p21 2y Vo IU‘.‘K)"k (té_t'i) :Ov

of the following equations:

- — U



where 11, 12--whcle numbers which will be defined later, and func-

tion ¢ has the form

| 9 (p, & v v)=p° | (1+ecosv)™ dfvj
. g (1Fecosw) ™

e T (2)

If Ty--maximum time of entire flyback, and T ,--minimum time
of stay in destination orbit, then limitations on time can be writ-

ten in the following manner:

1 Tu"‘(ta*tl)_-"z%iogu ) '
5. Tn_(t3_t2)+1521=0; . ( 3)

m—p

QL
here Ty and T, are unknown real numbers,

Let us designate pulses in the order of their seguence by /43
AV, i=11,2, 3, 4. Then

AV =V (ay, €. p) .
AV2:V(G2, €1 pl)!-
AVy=V (ay, &, po),
AV4=V (alv € p?)’

Ve, e p)=* (-3— g E’-)

(4}

The function V provides expression for the pulse in transfer
from a round orbit to an elliptical one and vice versa. The an-
gle between the direction of the pulse and the direction of the

initial velocity can be any size.



Let us minimize some function F, which reflects energy losses
in effecting flyback, which we will consider symmetrical with re-
spect to the variables diAVi, where ai——weights with which are
selected the appropriate pulses. These weights can denote, e.g.,
the pdrtion of the pulse in which fuel is expended. If a portion
of the pulse regquired for transfer from orbit to orbit is extin-
guished by the resistive medium, then the corresponding o, < 1.
Moreover, we will consider that function F depends on flyback
time (t4 - tl) so that

oF aF

Bt oh "
e (5}

The formulated problem is a problem of searching a conven-
tional extremum of function F. Let us introduce the undefined

1' Azf IIO’ As
ditions (1}, Uy s u2-—f0r the two last boundary conditions of (1),

coefficients A for the first eight boundary con-

and vl, vz—-for limitaticons on time (3) and form function ¢ of

the following form:

o L 8 9 T .
‘I’=F+Z ML+ 2 (%"iM,f‘l‘VjNi)~
L. J=t R (6)

where Li, Mj' Nj are the left parts of equations (1} and (3).
Then the necessary conditions of the minimum of function F are

written as follows:

o P T
‘;“:_6}7—01 l=lg 2, a4 ouy 16, ‘l:’ (7)

where

]‘ §='(P1, e]v g, T Tk Pas €. Uy, Uans Vo tl' f?f tﬂ’ t4’ os T“)' 1

T e ;e e R L T

As a result, we derive a system of equations (1), (3), (7}

consisting of 28 equations with 28 unknowns.



Let us write the necessary conditions for the minimum in a

more unfolded form

o
—F'*+)\1 +he + g - ?1 =0,

35 —ha cosvmwlgazcosmx-m ﬂwO :
1_16 0,

e, sin 'Ulu_7*5*l"1}f———= 0,

Aolioly SIN Ty —hg— P‘! V———_O’

aF 2
'3;_;".1‘)‘3’5'}\4‘&“92 ? =0,

o -—13a2coszbﬂ——l4a,cosTux4wugqi§L==0
- )\7_’\3—0

=0,

)-3&222 sin Vgy— )‘- — kg V—-—
}\4&182 Si!‘l 'Uf_;x— "3+ Hgﬁ___ O’

L k=0,
ly— Py R+ hgfly =0,
vt pok+ gy =0,
ar
TR W — ok + gty =0,
—2415=0,
— 1, =0.

This implies

) OF _ _OF 0av, | oF aav,
. g4V, etc.
; 5101 d AVy dpy +uE ] AV2 o

and also

l. — e 4‘“-[‘-‘-—-4‘* —————— e — L R
(P!_ (pb €; U'u:; 'Um) t“‘“’l 2

Using the properties of function F(S), from equations (8) we

derive

(8)

can



lﬁz _15,

}"7=‘ )\51
hg=—1hs,
Pe= & ’ (9)
oF -
- ”13“7“‘""17‘5—13?’1,
Vy= “"‘2}* — k.

e A ——r—— m . -

" The first, second, sixth and seventh equations of the group
of equations (8) can be solved with respect to the undefined co-
efficients %l’ 12, 13, A4. Consequently, we will find that

~ .‘ a7 A A, AT
= — & 7‘2=T2"’ =T g M,
dF 1
A‘—TQQCOS'U]K+ ael ( p a’zcos'ﬂlk-‘_ l)’
aF F o9 dwx)
A2=T§;1—01C05"-’m+—0‘e’r+!~‘-1(E‘“lcosvln““ dey /)
oF OF Do 3‘?2)
As*_—a—ma:COS’sz-FFg-l'P] (]ﬁ;"ﬁﬁ' S Vgg 1 des )’
oF aF ¢ 0% 0%
A4=Ea2cosvg,{~+‘-6724—{_— 1\~a—a2coswzﬂ+ aez),
Aj=a, COS T x—a) COS Ty '
1 ‘2 1x 1 1H (10)
Bg== 2, COS Vg 8y COSTng

i

We should note that this solution is always possible since
Al # 0, A2 # 0. Let us assume the contrary. Let, for example,

1 = 0; from the first two equations of (1) it follows that a, =

=,0,. We will not discuss such cases.
Symmetrical Flybacks
Let us take as the origin of the time count %(t1 + ty) . Then
T ()

We will call the flyback symmetrical, if the following equa-
lities are fulfilled:

/45



Pz’zplgp»
Cy=g,7g, -
—'02,{——’01“-—1}
— H_ﬂlx——vm

Tt T (12)

s

Using formulas (2), (4) and the property of symmetricity of
function F with respect to pulses &Vi (all a, we assume equal to
one), it is easy to show the validity of identities

do _ 0% _ 07w Om _ v

dpy  dpy T dp’  dey T dey  de’

OF __ éF _ 1 aF  @F __9F _ 1 OF

opr. . epe . 2 op ' dey . dey 4 oe (13)

A=A, H=Ay A A=A,
e | (14)

Now, the necessary conditions of the minimum {8}, using equa- /46
tions (9), (10) and (14), can be reduced to five equations:

oF oF , . :
o alag stn (fv — U+ T{a, sin v,—a, sin fvx)] .
{ oF

[V}T (@] sin v, cOs T, —a§ sin ¥, COS V) —
——~—§3 esin,sina ] +-

| R S [VW {(a, sin v, —a, sin vu)—}- esmfu smva]} {15)
4

ao ﬂ-l

T eV

(4005 0, —ay €08 0,) + 55 210, sin (0;— V) +
Oy . .
+5 (e, 5In v,—a, sin ¥},

i)
7 (.kp.—!—n}}h +A~5~£~ v) =,
e ml(Rpabn)=0.



Here, instead of the former variables U and_ls, new ¥ and

1
A are introduced according to the formulas

P':P‘lv! l’:)is\'. J

The boundary conditions of (1) are much simplified. Thus,
four first conditions are egual to two:

3 - . e ; w
. pP=a,(14ecos v,), ! _
. ”__€=E“E+??Q?QQ:_”»nﬁ (16)
The following four equations produce the same thing.

Getting rid oﬁ Wy and w, and considering that t0 = %—(tl + t4),

we f£ind that

2

Hyp— o+ by~ gy + Vo — 0y 4 2l =0, J

F

Uy — Ui+ Wb —Ngty+0,—w, +2nl,=0,

(L7)

Hence

o 1),_#____*.,J

i.e., at the initial moment in time, the points on their orbits
and the center of gravity axe located on a single line. Both
eguations in (17) are the same equation which can be given the
form '

ey mit vy, Dbl :
w. - . - e . | (18}

e s W T

The two last egquations from the group of eguations (1) are
equivalent to the following:

amralXA% g,

P

f Elty—t)=9(p, e, v, 1), . (19)7

[



We will call the Homann flyback a flyback whose orbits

"there" and "back” are Homann semi-ellipses.

Let ' o
TOETrD {1 —¥y),

o (1—x,),

n—

where Tho——the duration of Homann flyback, Ths-—time of stay in
orbit of destination for Homann flyback, Ko7 Ks-—small parameters,
smaller units in terms of the modulus. Now time limitations (3}
can be given the following form:

1 Com - S

B2y =Ty (1—%,), o (20)
T§+2t2: M‘Tm (I "_xn)'

e DTN SV e e emen

Ceonseguently, a system is derived of 11 equations (15), (l6),

(18), (19), (20) with 11 unknowns p, e, Vir Vo

A, u, Vv. The last three unknowns are auxiliary‘and we will not

r tlr tzf TO! TS r
derive them.

Four cases of equality to zero of the left parts of the two
last equations (15) are possible.

a

The first case: Tg = Tg = 0. Egquations (20) permit us to

find tl and t2 by the formulas
e = . o
fim— o Tp(l—x), f= — g Tra (1=,

b———

a (21)

after which equations (16), (18}, (19) form a system with the un-
knowns p, e, V., Vi Its solution does not depend on the form
of function F.

~J

|



The second case: T, = kg o+ nzh = 0.

mal if as a result of the solution we find that

| 24T (1—x) <0, -J (22)
S . =
. _ oF :
The third case: T = ku + n1A + T v = (0, can pro-
duce an optimal orbit if 1

Q

N 2 Te(lw>0. | -

And finally, the fourth case: ku + nlh + ,%%w_ v o= kﬁ +n2k
= 0, so that the orbit is optimal, we must have %imultaneous ful-
fillment of inequalities (22) and (23}.

In solution of the problem we will retain the following ana-~
lytic form of function F:

Fl1+

e B e e .

*(E—8)]-f BV, AV, AV, Aé@i.] (24)
where the gquantity |<(t4 - tl) is smail in comparison with one
and thus, can be considered a small parameter.

°

If k = Kg = Kg = 0, all four cases merge into one. The

solution of the system is a Homann flyback. Let us write this so~

lution:
r ;Iltlg - By—a ’]
0
SR
J Tm=’cn03p€lt}"ﬂ=0! Y= —8 pfg_ ' ( 25)
. o
_ 2 rp 2
ny—n;,
J={E( )
- _.I‘
¢ =—i7’ = :
w="3Tlw = fw=—gTm
: ‘AVm:?-L_(I-—Vl*!-E) i
. ’ . Vﬂ'l - b
’ & —l/“""“——
Al"ﬂﬂ':i?a_‘:(l— -I‘T‘eD)‘

The orbit can be opti-

/48



Note:
1. In this solution are contained additional quantities:
ao-*semimajor axis of the flyback ellipse, ny--average motion al-

ong this ellipse, ﬂvlo, AVZO——first and second pulses.

2. Here and henceforth, where there are double values or
double signs, the top value and top sign will correspond to fly-
back from an internal orbit to the outside and back; the lower
value and sign will correspond to flyback-ﬁfém the outside-orbit
to the inside and back.

3. Examples: As examples, let us cite both types of Homann
flyback. '

5
i)

a) Homann flyback Earth--Mars--Earth (top values and top
signs). In the capacity of a;, a, we will select parameters of
the planetary orbits, and as mean motion ny and n2~~the mean mo-
tion corresponding to these parameters, namely n, = kaia/z, n,=
= ka-%?. Then

2
\;;} _ m———beh L . . - . . i
( 2,=0999720,  n,=0,0172093, -
_ a&=1,51040, 11,==0,00926707.

For Homann flyback we find the following values:

- ‘ . .. .

{DG: 1,2031 1, 8020;203450, ) ao=l,25\gas\,“-_f
; | . 'UHD=0’ 'UK0=17, n0=0,012234'4, .

| AV1,=0,00166916 ==2,86012 KMfecer,

: AVy=0,00150473 =2,60541 wat/cex,

| Tu=9829991, © T,—489%423, -
R ‘__'t10=491d1495a fag=—1p=2344712,

10



b

-

Se o [ &1 a
lf 7 (aq by b bed), (26)

and equations (18) and (19) can be written as

8y = S bvmk-tny

y— ; (27)
Bty = U BUn—mk iy
e
Using formulas (2) and (26}, we find that
- _ I A oa 2 3n ey fdao 2 0‘-]4 .
mm gl e (Ewe ). | g

i

In formulas (15) the partial derivatives %g- and %g are multiplied

by values of the first order of smallness, and thus they themselves
can be calculated with consideration of the first order of small /50

values. Consequently,

2

T =207 X (550:), (Fapthor
= . (29)

2
oF [oar N dAl;
”[_38__2(1+x7ro)zlk 3Av; )0( de )0'

e s - ——— — .

In turn, the partial derivative %% is sufficiently represented
1

5

as

dF
e L (30)

Now, using formulas (15), (26), (29) and (30), we can derive

12



Ny

| 2 ‘ \
T 3 () = (8 (28 Joand
| [ () o (28 Jaure),

2
(I . =y (1427 ) E {d ')o?[;,: [(P—&}i) (addv,—altv,) T
=1

op
+ (asv ) (a,57, + abv, )]

' 2
—ome 3 (5% (2059, (), (280, (35) Jrod
8 (%g ") “}*/g-—ufo""l”alaz (%%)0 Jo(Bva—dv,)x +

: |
{58 S et arbo -

(31)

Case 1. TO = Ty T 0.

If time limitations of flyback and designation orbital stay
time are rigid, it may turn out that the optimum jis flyback where

TO = TS = 0.

Formulas (21) yield
o I - l .
-1" 9t = F TTOxU' Et? = _;' men. ‘ : ( 32}

Now, equations (27) may be written as

Mg
) Haz’}z—l_MKo?K"ﬁ 2"zl TPOKO-'_'%(B?)/’ . (33)

) M]SIJ‘H—NKB'UK: n

2—171, -
7 Dot + 2L By,

where (1 £,)72 .
: _ e (1 xe ViTeI
M=LT — Ustep e LRl
' Teyp  » M= V1 aneo
o LI (34)

13

™~
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I

e (34)
while y
S0) =8 __l_ T2y I
'!l (3¢) o ¥ 7 (a’QDr‘r-"fc alofaﬂ)'-}
e (35)
Let us designate the determinant of the system by Dl' We can
derive that
P 42, e
| P iplsonazert | (36)
Let us present the correction of any quantity y—as
By=8iy+iy+ ... '
and we will equate identical orders of small guantities of the
right and left in equations where these corrections appear. Then
for the ith order of magnitude évi and Gvu, we derive the system
M BEIJK—[—M Sl!y =1, 7
- Nago+ Ndo, =L,
where L(l) él) are the ith order of corresponding right sides.

The solution of

f ‘ B A ET _ ([ Fer—(t+e)®
E M= e M TFey 7 |

this system will be

Ny
“p, H—

P e ¢

™~
04Uy =

29

‘ N (37)
Y= G L0+ L

The first order is derlved under the condition that

14

‘ fiz—my —1
. Lill= —_meu, Lg”—ﬁ—l-?"mxn '



From formula (26) we see that for all cases of

and the first order of lei and 61

and &,e according to the formulas

v, permits us to calculate 529

2 L

hp=+ L @ui—tud),

e (38)

| T
B = ( 2ok 22303) .
b ]

&y

The second andchigher orders can be calculated according to sim- /52
pler formulas, since the right sides of the equations for these
orders acquire the following férm:

.

: gf):nQL(i); . Lg{):nl yac)

i

-

gk

Therefore

. att"u: (HQNK“—HIME) D;"ILU), ,
) Bty = (___n2Nn+ ’51Mu) Di"l[.w. .

Calculations yield

PR S - b - e — .l _ e — -y
toNy—mMy _ —naNy+ 1My Py ~r—
—_—— e b

Dy Dy + 46"D'V1 ‘.—t?g .

Therefore, for all subsequent orders we have

a—

—Bal = T noi T a2 1o
atvn—.ﬂilvu"‘ "i: e, Vl __"85 L f- —' . (39}

15



<

For the second order
ey ﬁrﬁ L ) ay N
ez 5 ( by ”"2)‘ (40)

T e B

Generally, L(l) is the sum of terms of the ith order of magni-
v permit us to calculate 53p and 536

_l 1
tude of k “(84) , Szvi, 62 u
by the formulas

hp=nt 2 3 lvxagw By 0e,),

_qa_ai:__ ( 2L S‘wj,ow —f- L S,wkogfv ) (41)
Case II. TO = ku + n2A = 0.
The first equation (20} vyields
SR
M Te | (42)
Then the first equation (27) and eguation

— __MM‘ (43)

k[-"""ng _‘0

E R

form a system with respect to 6V. and 6v . Presenting in equations
(27) and (43) a decomposition of (28) and (31) for the 1th order

of small gquantities we find that

il

Maw, +Mx§¢wn =L,
Y@t +V div,=x G,
T LU=, (44)

Yo (1 Te) M, A ¥ m_(1+eo)M B,
A- BFe)(ze)+4 ¥ Te,
i (aav&) *'(aavg)
: of Bxe (I Fed+ 41 1T,
B~ (0&\/3) + oo I—gg > (BAVQ)Q’

where

16



— 2“*{.’2) e .
x=4 <U—ef)
= eva J | (45)
The first eguation of system (44)

completely coincides with /53
the first equation of system (33) written for the igu

h order of
magnitudes évi and §v

(1)

In G~ are gathered all terms of the ith

order of expression
ku + n

ZA , taken with inverted signs, plus terms containing Sivi
and Givu’ from which is férmed the left side of the equation.

Let us assume that

[l

_a._f e

, e '
then the following inequalities are valid:
| M50 M0 v,=0, ¥o=0, D<o, } (47)

where D, is the determinant of system (44). Let us remember that
the top signs of the inequalities are taken for flyback from the
inside orbit to the outside and back. Let us introduce the nota-
tions

)

4 xﬂzxMﬂDz—lv -X-',;tJCMEDz_l, . . '
, .yH'tAi—Yl{D;]- xK:.¥ Y.«_Dz_].
e oA s ]

(48)
Now the solution of system (44) can be written as follows:
lls._‘ ) —y
,Bﬂ’li=:$yul¥)ﬁ_‘x36m;
b= FylP+a 00, (49)
where X; > a, X, > 0, Yy 0, Yy > 0. The first order we derive

17



assuming that

L= ”2-—!11 meo‘ Gﬂ)=0, 1

T e e

(1) - (L)
Because L;” = + !Ll | when Xg > 0, then lel > 0, 6lvu > 0.
When X0 < 0 we find that lei < 0, leu < 0. The second formula
-(27) produces - B
31&— '(—--*- (N 31'0,,—|-N 31‘7-’5) _
T T «(50)

When x4 > 0 and Gltz > 0; when Xg < 0 61t2 < 0. At small Xg*
!

zaiqnggw1thlreduc1ng the total time of flight, the stay in destina-

tion orbit also decreases and vice versa.

The second order is derived under the condition that

@

J R el

. e
L=+ < —:OZ“EO (wz 3!1’)2 31'0 ) -
9__ 3% oz My e 2(1—e} )—(!i8)3’2 of
O Ty [ W (aiw,) +
20— —(1Fe)*® 7 aF ] y
LT (" AVs ) e (51)
For 62t2 from (27) we derive
o ;?” ; ,,nl-.zﬁw
e " B2 g M—-ﬂg—!l] N (52)
q
.This case can yield an optimal orbit if /
RS 5 Torkmn \ (53)

where Gtz = 61t2 +662t2.

Corrections for the parameter and eccentricity are calculated

for all cases using formulas (38) and (41).

18



oF _ -
Case TIT. ku + nlx + Btl v u_rs 0.

This case is completely analogous to the second, if everywhere
is replaced the first equation of {20) with the second and on the
other hand, equation (43) by the equation

l' kp+nl+w-mv_0 WJ (54)

Consequently, we find that

af2t__r, \

(55)

[

and the system . S
N@m-hNamA,LQ _
Z,ﬁﬂf —|—Z S;U waf‘J (56)

where _ . : _ : S
K fgf@Nﬂ - Ze=—(lte N8B, '

and H(l)
equation (54). Taking into account the assumption of (46), we

‘-&H.}—_:(_):wa:-O ZH<O ZKQO m (58)

where D3 is the determinant of system (56).

(57)
is derived by analogy'with G(l) froﬁ the léft side of

can show that

If we designate that

w, =xM|D;l' w‘{:xNR\Dg-!

Zy=+Z,D7, Z=FZ,D:, (59)
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then the solution of system (56) will appear as
80y = F 2, L)t HD,
30, = F 2, LD+ w HO,

- e _ - (60)
wherein _
[ x>0‘ 2>0 wu>0 @, >0. . {,
To derive the first order we assume that
H_ fa—ry |
{. =T T HO=—8 2 l (61)

e

If fox > 0, then When Xg > 0 we yield 5lvi >0, Xg < 0--61vu <0,

{ 3 f1— *—‘—-2___,11 (M BIWR+MK31,U“),‘ . k;—'

o

(62)

Substituting in (62) §,v., §,v  expressed with the aid of formulas/55

(6), we can be sure that when Xg 0 and Gltl > 0. That is, the

presence of an internal reserve of mass and the reduction in time
of orbital stay (destination orbit) reduce the total duration of
the flight. To derive the second order we assume that

YA . - —rr.

Pt 3“ . ~n R Y
- @)= il a3 ar
L=+ 8 My ?"'ﬂ (a[ 3 d“ Bl'z’g) ’

(63)

2 ..M e ke
H on+[ Tty t - o= (afhyn,—a, @K)] fi

The first equation of (27) yields

;”'_":_—" e e T 'H;]' 1
\_ aztl— Py (Maﬂw +M82@ gf.ninl_ ‘ |  (64)

N - - -
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This case can be an optimal orbit if the ineguality is fulfilled

|
o 1
Otl > g TrOKJ! }

B} (65)
where 6t. = 8,t, + & é . @
1 171 271 o
Case IV,
Necessary conditions of the minimum are
kutnd + 35 =g,
N kp+-nyh==0 (66)

can be represented in the form of a system of equations relative

to Givi, 5ivu' It appears that the system has the form

- ]}ual}i’ﬂr"_r},nai,pu: xowv ‘- - ‘
Zibmnt Zbp=xHO. (67)

Here jall notations are as before.

For the determinant of this system Dyr the calculations yield

the following ekpression:

De—(-eyasD, |

(68)
Considering (46), we yield D, 0. Let
(The=—XV,D7L, m=xV DD, s
/ CH:¥xZHD4_!s Cx=xeD;_tv ?,' (69)
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then the solution of system (67) will be

- - ‘,’G(E)‘_,ﬁ H{;} :H
"U ,‘_{:"G()__,’.i H(n . :

— o ——

(70)

where n, > 0, Ny > 0, z; > 0Oy Cu > 0,

First Order

. Gm=g, hmu=_8 ﬁx ‘-}
Wi e ——

(71)
If £k > 0, then lei > 0, 6lvu > 0.
We derived from formula (27) that
a tl;(n2_n1) (Mﬂalﬂli"{'MxBlvx)f 3 ( 72)
D= (=) (N 3w, + Ndyoy).

ey

With these same assumptions Gltl >0, Gltz > 0; consequently, there
is a reduction in both the total duration of the flight and the
destination orbit stay time.

Second Order

(2) (2)

G and H are calculated according to formulas (51) and

{63). For 62tl and 62t2 we find that

{Bﬁ_M2nerMW+M%W—Um
‘ 02:,‘2—(17,.._ 23! (_N o0y + N3 02@ w__L(z))

o~

This case yields an optimal orbit if there is fulfillment simul-

taneously of two inequalities:

= - |
. 0t1>7 Trgxm ]

22 . | atz‘-{:"lf'rrn“m (74)



Selection of an Optimal Orbit

The optimal orbit should SatiSfY:, above all, conditions (3)
with real To and Tg- These conditions for the three last cases
are written as inequalities (53), (65), (74). The first case al-
ways yields an orbit which satisfies conditions (3), but it will
not always be an optimal orbit. An additional criterion of selec-
tion is the magnitude of function F, calculated in these orbits.
For this purpose, we will calculate & correction for the function
F, induced by deviation of the flyback orbit from Homann flyback.
Using the property of function F (5) and its form (24), we find .

that y T
[‘ 7 =2, (%@'—8“)"”2 (r'i'f_é)u Blavy).

i=]

U (75)

Corrections for pulses can be found using formulas (4) and (26).

e——— - e -

BAV)=T

k2, — \n ’ -
B8V opy (1€ Ndv2+(1 2 ep)2 N, 02, (76)

‘ B(AVy)= F

Rle _ ) - ‘
T BTy (1 F ) M0+ (11 ,)2 M 303,

4.

LI R .
‘ v

Therefore, always

™

|

§F > 0,
if fOK > 0 and assumptions (46) are true.
If we are limited to the second order of small values, the
correction F, calculated by formula (75), is an additional cri-

terion for selecting the optimal orbit. The orbit for which OF
is smallest is the optimal crbit.
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